Логические и арифметические основы и принципы работы ЭВМ

       

Элементарные функции алгебры логики


Существует несколько синонимов по отношению к функциям алгебры логики:

  1. функции алгебры логики (ФАЛ);
  2. переключательные функции;
  3. булевские функции;
  4. двоичные функции.

По мере необходимости будем пользоваться всеми этими синонимами.

Рассмотрим некоторый набор аргументов:

<X1,X2,X3,...Хi,...Xn>

и будем считать, что каждый из аргументов принимает только одно из двух возможных значений, независимо от других

Чему равно число различных наборов?

Xi = {0, 1}

Поставим каждому набору в соответствие некоторое двоичное число:

X1,X2,...........Xn

0, 0,...........,0 нулевой набор 0, 0,...........,1 первый набор 0, 0,..........1,0 второй набор ................... 1, 1,...........,1 (2n-1)-ый набор

Очевидно, что количество различных X1,X2,...........Xn n-разрядных чисел в позиционной двоичной системе есть 2n.

Допустим, что некоторая функция F(X1,X2,....Xn) задана на этих наборах и на каждом из них она принимает либо '0'-ое, либо '1'-ое значение.

Такую функцию называют функцией алгебры логики или переключательной функцией.

Чему равно число различных переключательных функций 'n' аргументов?

Т.к. функция на каждом наборе может принять значение '0' или '1', а всего различных наборов 2n, то общее число различных функций 'n' аргументов есть: 22n.

По сравнению с аналитической функцией непрерывного аргумента даже для одного аргумента существует множество различных функций.

Число аргументовЧисло различных перекл. ф-ций
1234510
41625665536~4*109~10300

Различные устройства ЭВМ содержат десятки и сотни переменных (аргументов), поэтому понятно, что число различных устройств, отличающихся друг от друга, практически бесконечно.

Итак, нужно научиться строить эти сложные функции (а стало быть, и устройства), а также анализировать их.

Задача синтеза более сложных функций заключается в представлении их через простые на основе операций суперпозиции и подстановки аргументов.

Таким образом, вначале необходимо изучить эти элементарные функции, чтобы на их основе строить более сложные.



Содержание раздела