Десятичные двоично-кодированные системы.
Иногда в ЭВМ используются десятичные системы счисления. Их выгодно использовать тогда, когда объем исходных данных для обработки на ЭВМ – велик, сама обработка производится по относительно несложным программам. На этом происходит значительная экономия времени, которая вытекает из того, что не нужно делать перевод из десятичной в двоичную систему и обратно.
Как правило, в состав оборудования таких ЭВМ вводится АУ, работающее с числами в десятичной системе счисления. Поскольку в качестве основного запоминающего элемента используется триггер-ячейка с двумя устойчивыми состояниями, то каждая десятичная цифра кодируется совокупностью двоичных символов.
Перевод чисел из десятичной системы в десятичную двоично-кодированную выполняется исключительно просто, поразрядно и одновременно по всей сетке:
879,6510
1000 0111 1001, 0110 010110-2Аналогично, выполняется и обратный перевод:
0110 1001, 0101 001110-2
69, 5310Существует большое разнообразие десятичных двоично-кодированных систем. Это многообразие вытекает из избыточности двоичного кода, при котором из 16 возможных комбинаций в каждом разряде используется по прямому информационному назначению лишь 10.
Наиболее широкое применение находят системы кодирования 8421 и 8421+3 (код Штибитца).
Система 8421 – неудобна тем, что при выполнении операции вычитания нет прямого перехода от цифры каждого разряда к дополнительному коду.
0000 - 0
0001 - 1
0010 - 2
0011 - 3
0100 - 4
0101 - 5
0110 - 6
0111 - 7
1000 - 8
1001 - 9
В то же время эта система обладает свойством аддитивности , поскольку результаты операции сложения над числами в десятичной системе и над их изображением в системе 8421 – совпадают.
Система 8421+3 - более интересна, т.к. она обладает свойством самодополнения. Видно, что дополнение до 9 можно получить, применяя операцию поразрядного инвертирования кода.
0011 – 0
0100 – 1
0101 – 2
0110 – 3
0111 – 4
1000 – 5
1001 – 6
1010 – 7
1011 – 8
1100 – 9
Всего существует А1610 = 2,9•1010 вариантов 10-ых двоично-кодированных систем.