Логические и арифметические основы и принципы работы ЭВМ

       

Десятичные двоично-кодированные системы.


Иногда в ЭВМ используются десятичные системы счисления. Их выгодно использовать тогда, когда объем исходных данных для обработки на ЭВМ – велик, сама обработка производится по относительно несложным программам. На этом происходит значительная экономия времени, которая вытекает из того, что не нужно делать перевод из десятичной в двоичную систему и обратно.

Как правило, в состав оборудования таких ЭВМ вводится АУ, работающее с числами в десятичной системе счисления. Поскольку в качестве основного запоминающего элемента используется триггер-ячейка с двумя устойчивыми состояниями, то каждая десятичная цифра кодируется совокупностью двоичных символов.

Перевод чисел из десятичной системы в десятичную двоично-кодированную выполняется исключительно просто, поразрядно и одновременно по всей сетке:

879,6510

1000 0111 1001, 0110 010110-2

Аналогично, выполняется и обратный перевод:

0110 1001, 0101 001110-2

69, 5310

Существует большое разнообразие десятичных двоично-кодированных систем. Это многообразие вытекает из избыточности двоичного кода, при котором из 16 возможных комбинаций в каждом разряде используется по прямому информационному назначению лишь 10.

Наиболее широкое применение находят системы кодирования 8421 и 8421+3 (код Штибитца).

Система 8421 – неудобна тем, что при выполнении операции вычитания нет прямого перехода от цифры каждого разряда к дополнительному коду.

0000 - 0

0001 - 1

0010 - 2

0011 - 3

0100 - 4

0101 - 5

0110 - 6

0111 - 7

1000 - 8

1001 - 9

В то же время эта система обладает свойством аддитивности , поскольку результаты операции сложения над числами в десятичной системе и над их изображением в системе 8421 – совпадают.

Система 8421+3 - более интересна, т.к. она обладает свойством самодополнения. Видно, что дополнение до 9 можно получить, применяя операцию поразрядного инвертирования кода.

0011 – 0

0100 – 1

0101 – 2

0110 – 3

0111 – 4

1000 – 5

1001 – 6

1010 – 7

1011 – 8

1100 – 9

Всего существует А1610 = 2,9•1010 вариантов 10-ых двоично-кодированных систем.



Содержание раздела