Физическое окружение вычислительной техники

       

Новые типы динамической памяти


Стоит начать с того, что за последние десять лет скорость работы микропроцессоров возросла во много раз больше, чем быстродействие оперативной памяти. Так, high-end- компьютеры образца 1984 года (PC/AT) работали с тактовой частотой 10 МГц. Сегодня внутренняя тактовая частота процессоров Pentium достигает, например, 1 ГГц. За этот же период время доступа микросхем оперативной памяти снизилось со 150 всего до 10—5 нс. Причем заметим, что стандартная схемотехника, применяемая в производстве оперативной памяти, не обещает особых изменений и в будущем. Что касается внешней кэш-памяти (подробнее о ней чуть позже), то, во-первых, она достаточно дорогая, а во-вторых, ее использование оказывается эффективным только до тех пор, пока программное приложение не начинает работать с данными, находящимися в разных частях оперативной памяти. Ведь, как известно, основной принцип кэш-памяти заключается в том, что 10— 20% команд или данных будут необходимы в 80—90% случаев. Кроме того, считается справедливым предположение, что если считываются инструкции или набор данных из одного места памяти, то соседние с ними также скоро будут востребованы. Стоит напомнить, что, например, в микросхемах, совместимых с архитектурой Intel, начиная с 486-х процессоров, для доступа к памяти реализован так называемый пакетный (burst) режим. Он заключается в том, что при необходимости чтения одного слова процессор вместе с ним считывает еще три, расположенных рядом. Обычно время пересылки измеряют в тактах и записывают, например, так: 6-3-3-3. Это означает, что если на первую пересылку данных из памяти потребовалось 6 тактов работы процессора, то на каждую последующую — только по 3.

Итак, если процессору 8088 требовалось четыре такта для передачи данных, то современным процессорам — всего один. Например, Pentium, работающий на внутренней тактовой частоте 100 МГц, с внешней кэш-памятью (время доступа 15 нс) мог обеспечить пакетный режим 3-2-2-2. Для обмена с динамической памятью параметры будут в два-три раза хуже, например 7-3-3-3.
Хотя теоретически микропроцессор 486DX2- 66 мог бы реализовать пакетный режим 2-1-1-1, но с обычной динамической памятью (время доступа 70 нс) реальные значения будут на уровне 5-2-2-2.

В настоящее время можно выделить два основных схемотехнических решения, используемых для увеличения быстродействия динамической памяти. Одно из них основано на синхронной работе памяти и процессора, что достигается использованием внутренней конвейерной архитектуры и чередованием адресов. Другое решение предполагает включение в структуру динамической памяти определенного количества быстрой статической памяти, которая в данном случае работает примерно как встроенный кэш.

Синхронная DRAM (Synchronous DRAM, SDRAM) и синхронная графическая RAM (Synchronous Graphics RAM, SGRAM) — еще две популярных вариации на ту же тему. Оба эти типа однопортовые, и поэтому несколько дешевле, чем VRAM или WRAM. Преимущество SDRAM и SGRAM перед обычной DRAM в том, что эти микросхемы памяти используют тот же сигнал таймера, что и CPU. Это означает, что данные микросхемы памяти готовы к передаче данных тогда, когда CPU их ожидает. Подобные микросхемы используют трехступенчатую конвейерную архитектуру и, кроме того, внутренний доступ типа "пинг-понг" к двум блокам памяти с чередованием адресов. Тактирование микросхем осуществляется внешней частотой для микропроцессоров. Современные SDRAM могут работать на тактовых частотах 66, 75, 83,100 и 133 МГц. Пионерами в разработке подобных устройств являются фирмы Samsung и NEC. При использовании других типов памяти CPU требуется больше времени, чтобы убедиться, что микросхема передала данные, а это создает непроизводительные задержки. Стоит отметить, что первый доступ в пакетном режиме выполняется медленнее для микросхем SDRAM, нежели, например, EDRAM. Для последующих трех — все наоборот.

Одним из наиболее быстродействующих типов памяти является RDRAM (Rambus DRAM). Это, наверное, наиболее сильно отличающаяся дизайном память, потребовавшая абсолютно новой архитектуры.


Кроме того, из всех созданных на сегодняшний день технологий эта обладает наибольшим потенциалом по скорости. Однако этот потенциал стоит недешево. RDRAM должна соединяться с CPU через очень специфическую шину, которая не может быть слишком длинной. Тактируемая частотой 250 МГц 9-разрядная RDRAM достигает пиковой скорости передачи 500 Мбайт/с, а 2 ГГц – 4 Гбайт/с. Вообще говоря, Rambus-архитектура состоит из трех частей: Rambus-интерфейса, Rambus-канала и Rambus-микросхем. Вследствие использования высоких тактовых частот серьезные требования предъявляются к печатным платам и соединениям. Подобная память, впервые разработанная американской компанией Rambus, в настоящее время выпускается такими компаниями, как NEC, Fujitsu и Toshiba. Пройдет время, прежде чем мы увидим RDRAM в качестве основной памяти PC. Несмотря на это, Intel обратилась к RDRAM как к решению проблемы нехватки памяти компьютера в недалеком будущем, а так как Intel является основным производителем материнских плат для PC, можно ожидать претворения этой затеи в жизнь.

Стоит отметить, что существуют и другие типы памяти, причем более или менее экзотические. Например, в MDRAM (Multibank DRAM) вся память делится на 10 маленьких банков, время доступа к которым существенно меньше времени доступа к одному большому: 15 не против 50 не. Тем не менее, по оценкам экспертов, в ближайшее время не следует ожидать ухода от массового использования в персональных компьютерах так называемой EDO (Extended Data Out) DRAM или ее разновидности BEDO (Burst EDO) DRAM. Во-первых, она обеспечивает более высокую скорость передачи (особенно в пакетном режиме), а во-вторых, полностью совместима по выводам с современными SIMM-модулями DRAM. В отличие от обычных микросхем DRAM в EDO DRAM добавлен набор регистров-"защелок", благодаря которым данные на выходе могут удерживаться даже в течение следующего запроса к микросхеме. Такого эффекта можно добиться на обыкновенных DRAM только в режиме чередования адресов. Напомним, что в любом обращении к памяти можно выделить три фазы: начало доступа; период, когда данные становятся действительными, и непосредственно передача.


Эти фазы повторяются последовательно для каждой ячейки в считываемой строке. В случае с EDO-памятью временные параметры (а следовательно, и быстродействие) улучшаются за счет исключения циклов ожидания в фазе готовности данных. По некоторым данным, EDO DRAM работает быстрее FPM DRAM примерно на 20—25%. Однако при использовании кэш памяти второго уровня (L2) быстродействие возрастает только на 5%. Стоит отметить, что EDO-память дороже обычных DRAM на 7—10%. Именно поэтому в настоящее время EDO-память рекомендуется использовать в недорогих системах без кэш-памяти, что в данном случае достаточно эффективно. Кроме того, оправдано применение EDO-памяти и в многозадачных системах.

Эта история не имеет конца. Я всего лишь надеюсь дать некоторое представление о том, как выглядит ситуация в настоящий момент. Через несколько лет, без сомнения, перед нами предстанет совершенно иная картина чипов памяти. Можно быть уверенным только в одном, — это будет более быстрая, более дешевая и более вместительная память. Естественно, программы будущего наверняка будут требовать больше места и скорости, чем мы сможем им предоставить.


Содержание раздела